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Given theQ: 8 powerful
Q: 9

implications
Q: 10

of relationship quality for health
and well-being, a central mission of relationship science is explain-
ing why some romantic relationships thrive more than others. This
large-scale project used machine learning (i.e., Random Forests) to
1) quantify the extent to which relationship quality is predictable
and 2) identify which constructs reliably predict relationship qual-
ity. Across 43 dyadic longitudinal datasets from 29 laboratories,
the top relationship-specific predictors of relationship quality were
perceived-partner commitment, appreciation, sexual satisfaction,
perceived-partner satisfaction, and conflict. The top individual-
difference predictors were life satisfaction, negative affect, de-
pression, attachment avoidance, and attachment anxiety. Overall,
relationship-specific variables predicted up to 45% of variance at
baseline, and up to 18% of variance at the end of each study.
Individual differences also performed well (21% and 12%, respec-
tively). Actor-reported variables (i.e., own relationship-specific and
individual-difference variables) predicted two to four times more
variance than partner-reported variables (i.e., the partner’s ratings
on those variables). Importantly, individual differences and part-
ner reports had no predictive effects beyond actor-reported
relationship-specific variables alone. These findings imply that
the sum of all individual differences and partner experiences exert
their influence on relationship quality via a person’s own
relationship-specific experiences, and effects due to moderation
by individual differences and moderation by partner-reports may
be quite small. Finally, relationship-quality change (i.e., increases
or decreases in relationship quality over the course of a study) was
largely unpredictable from any combination of self-report vari-
ables. This collective effort should guide future models of
relationships.

romantic relationships | relationship quality | machine learning | Random
Forests | ensemble methods

Romantic relationship quality—a person’s subjective percep-
tion that their relationship is relatively good versus bad

(1)—is a powerful psychological construct with far-reaching so-
cietal consequences and policy implications (Fig. 1). Unhappy
marriages are associated with many negative stress-related out-
comes (2), including poor physical health (3), high blood pres-
sure (4), poor immune system functioning (5), mortality (2), and

Significance

What predicts how happy people are with their romantic relation-
ships? Relationship science—an interdisciplinary field spanning psy-
chology, sociology, economics, family studies, and communication—
has identified hundreds of variables that purportedly shape romantic
relationship quality. The current project used machine learning to
directly quantify and compare the predictive power of many such
variables among 11,196 romantic couples recruited by 29 research
laboratories. People’s own judgments about the relationship itself—
such as how satisfied and committed they perceived their partners to
be, and how appreciative they felt toward their partners—explained
approximately 45% of their current satisfaction. The partner’s judg-
ments did not add information, nor did either person’s personalities
or traits. Furthermore, none of these variables could predict whose
relationship quality would increase versus decrease over time.
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risk of mental health problems (6). Low marital quality spills
over into people’s professional and personal lives, predicting lost
work productivity (7) and lower well-being for children (8, 9).
As theQ: 11 importance

Q: 12
of

Q: 13

relationships for health, work pro-
ductivity, and parent/child well-being has entered public aware-
ness, there has been an explosion of research attempting to
explain, predict, and improve relationship quality. That is, why
do some partners feel especially positively about their relation-
ship, and why do these evaluations change (10)? Interest in this
question across many disciplines—including psychology, sociol-
ogy, communication, economics, and family studies—has trans-
formed relationship quality into one of the most central and
pervasive outcome variables in the social sciences, and a primary
focus of applied efforts to strengthen marriages [e.g., the mul-
timillion dollar Healthy Marriage and Relationship Education
Grant program in the United States (11)]. These efforts have
resulted in a wide array of constructs and concepts that—via
interpersonal, behavioral processes—shape relationship quality
and relationship stability (see refs. 12–15 for reviews). Some of
these variables characterize individuals (e.g., age at marriage,
attachment style, neuroticism) (Fig. 1, Upper Left box), whereas
others characterize partners’ perceptions and experiences within
the relationship itself (e.g., conflict, sex, relationship length,
domestic violence) (Fig. 1, Lower Left box).
A key challenge now—more than 20 y after the emergence of

relationship science as a mature discipline (16)—is to make this
knowledge cumulative. In a critique of the field, Reis (17)
highlights an important factor that has historically limited
scholars’ ability to organize their efforts into a coherent body of
knowledge: The tendency of the current academic system to
reward individual contributions rather than team science. In-
deed, a collectivistic approach would be particularly beneficial to
relationship science for several reasons. First, couples are costly
to recruit, necessarily limiting the statistical power that can be
achieved in a given study by a single laboratory. Second, par-
ticipants become fatigued after completing too many measures,
limiting the number of constructs that can be examined in a given
study. Third, traditional techniques (e.g., regression) make it
easy for researchers to mistakenly overfit statistical models to

individual datasets and are suboptimal for comparing the pre-
dictive importance of constructs (18, 19). The result of these
practical research constraints is that no individual laboratory has
the resources or means to compare the efficacy of the growing
list of important constructs, much less their affiliated theoretical
frameworks.
To document the most reliable predictors of relationship

quality and the relative predictive power of different measure-
ment strategies, the ideal study would combine the longitudinal
and dyadic data-collection efforts of multiple independent lab-
oratories, it would include a wide array of published and not
previously published predictors, and it would use preregistered
statistical procedures that permit data exploration without
overfitting. This paper reports the conclusions of such a study.
The project combines the efforts of 86 relationship researchers
by examining 43 longitudinal datasets (funded by 39 national/
university grants) with 11,196 couples (baseline n = 22,163 par-
ticipants) and 2,413 (mostly self-report) measures collected at
baseline. The datasets tracked couples for an average of four
time points (range = 2 to 11 time points) over 14 mo (range = 2
to 48 mo). The baseline measures collected from each partner
were used to predict relationship quality at baseline (the first
time point collected), at follow-up (the last time point collected),
and over time (i.e., each participant’s slope calculated across all
available time points). This design provides initial answers to the
questions of: 1) How much variance in relationship quality can
researchers predict? and 2) What types of psychological mea-
sures most reliably emerge as predictors of relationship quality Q: 14?

Data Solicitation Strategy
Datasets were eligible to be included in the study if they in-
cluded: 1) Data from both romantic partners of each couple, 2)
data collected from at least two time points that were at least 2
mo apart, and 3) a measure of relationship satisfaction collected
at each time point.
The overall design and analysis plan for the project was pre-

registered on June 15, 2018 (https://osf.io/g9sqf/). We used list-
servs (Society for Personality and Social Psychology and
International Association for Relationship Research), social
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Fig. 1. Antecedents and consequences of relationship quality (1–9). Schematic depiction of the field of relationship science. In their work, relationship
scientists use an extensive assortment of overlapping individual difference and relationship-specific constructs. These constructs predict the way couple
members behave toward and interact with each other, which in turn affects relationship quality and a variety of consequential outcomes. These processes are
themselves embedded in social networks as well as broader cultural and historical structures.
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media (Twitter), and the Open Science Framework (OSF)
StudySwap platform to invite researchers with dyadic longitudi-
nal datasets to join the project. We solicited new datasets from
June 15 to October 1, 2018. A total of 48 datasets were com-
mitted to the project, of which 43 datasets were ultimately pro-
vided. Datasets were analyzed on a rolling basis from June 18,
2018 (Dataset 1) to March 25, 2019 (Dataset 43). For each
dataset, coauthors provided a codebook outlining their design
and measures. Each codebook was used to tailor an analysis
plan, and each was preregistered prior to analysis (i.e., 43 pre-
registered analysis plans total).

Measures
The dependent measure was relationship quality (i.e., a person’s
subjective perception that their relationship is relatively good vs.
bad; a person’s evaluation of the relationship), and our primary
operationalization of this construct consisted of relationship-
satisfaction measures. Commitment was used as an additional
operationalization of relationship quality in the datasets that
included it (31 datasets). We selected satisfaction as our primary
dependent measure because it is the most common dependent
measure used in relationship science—we have never encoun-
tered a couples dataset that lacked it—and we selected com-
mitment because it is theoretically central to the field and nearly
as pervasive (13).
The remaining self-report measures collected at baseline were

used as predictors; the specific predictors included varied from
dataset to dataset. Baseline measures were categorized into two
groups of predictors: Individual difference variables (judgments
about the self, such as traits and characteristics) and
relationship-specific variables (judgments about the relationship
or the partner, and variables that are, by definition, identical for
both couple members, such as relationship length). Although the
major theories of relationships differ with respect to which spe-
cific individual and relationship variables they emphasize, both
classes of variables are purported to make independent or in-
teractive contributions in virtually all of them (e.g., attachment
theory, interdependence theory, the interpersonal process model
of intimacy, relational regulation theory, risk regulation theory,
the vulnerability-stress-adaptation model) (see ref. 15 for a re-
view). Furthermore, two versions of each predictor were avail-
able in all datasets: An actor-reported version (Amir’s individual/
relationship variable used to predict Amir’s satisfaction), and a
partner-reported version (Amir’s partner Alex’s individual/re-
lationship variable used to predict Amir’s satisfaction). The
distinction between actor and partner is also central to re-
lationship science (20), and their purported joint importance is
often the raison d’être of intensive dyadic data collection efforts.
Four relationship-specific variables—trust, intimacy, love, and

passion—are often conceptualized as predictors of relationship
quality (21–23). But alternatively, they could be conceptualized
as indicators of relationship quality, as these four variables may
tap relationship quality approximately as well as satisfaction and
commitment do (1). It is therefore possible that retaining these
measures as predictors artificially inflates the amount of variance
that relationship-specific variables can collectively explain. In the
models presented below, we removed the actor and partner
versions of trust, intimacy, love, and passion as predictors (59
total variables across 21 of the datasets). A version of the anal-
yses in which these predictors are retained, consistent with our
preregistered analysis plan, is also presented in SI Appendix.
The initial categorization of variables into individual versus

relationship variables was made by the authors of each dataset.
After all 43 datasets had been compiled, the first and second
author combined the predictors into a master list of individual
versus relationship variables, and recategorized variables as
necessary to ensure consistent categorization across datasets (see
the OSF for procedural details). We next identified constructs

that were measured multiple times across datasets and grouped
each one using a common code. For example, the item, “How
old are you?” from Dataset 1 and the item “Age in years” from
Dataset 4 were each coded as “age.” This coded master list of
predictors was then used to compute the predictive success rate
of each construct.

Data Availability
Analysis plans, final syntax files, and word files outlining any
preregistration changes can be found for each dataset in the OSF
(https://osf.io/d6ykr/). Analytic features of each included dataset
are reported in Table 1. Demographic features of each dataset
can be found in SI Appendix. Meta-analytic materials and data,
including the final master list of predictors and the syntax used to
compute success rates, are also available in the OSF (https://osf.
io/v5e34/). The raw datasets are too ethically sensitive to make
publicly available. However, S.J. will work with any professional
scholar to obtain access to the raw data for any of the 43
individual datasets.

Analysis Strategy
Machine Learning. Each dataset was analyzed using Random
Forests (24), a machine-learning method designed to handle
many predictors at once while minimizing overfitting (i.e., fitting
a model so tightly to a particular dataset that it will not replicate
in other datasets). The Random Forests method builds on clas-
sification and regression trees (25). Specifically, using a random
subset of predictors and participants, the Random Forests
method tests the strength of each available predictor one at a
time through a process called recursive partitioning. It builds a
decision tree out of the strongest available predictors and tests
the tree’s overall predictive power on a subset of data that were
not used to construct the tree (also called the “out of bag”
sample). The Random Forests method does this repeatedly,
separately bootstrapping thousands of decision trees and then
averaging them together. Results reveal how much variance in
the dependent measure was predictable and which predictors
made the largest contributions to the model. Random Forests
are nonparametric—they do not impose a particular structure on
the data—and as such they are able to capture nonlinear rela-
tionships, including interactions among the predictors (26). For
example, a model with actor- and partner-reported predictors
would detect any robust actor × partner interactions (e.g.,
moderation, attenuation effects, matching effects) that could not
be captured in a model featuring actor- or partner-reported
predictors alone.
Each model was conducted using the “randomForest” package

for R, with the same tuning parameters that we have used in
previous research (27). Specifically, we set “ntree” to 5,000 for
all analyses, meaning that each Random Forests model was
constructed from 5,000 regression trees, and we left “mtry”—the
number of predictors available for splitting at each tree node—at
its default value of one-third of the total number of predictors.
Variable selection was conducted using the interpretation step of
the “VSURF” package for R, such that models were constructed
using only the predictors that meaningfully contributed to the
model (i.e., the “interpretation” step). Procedural details on how
the VSURF R package selects predictors can be found in papers
published by Genuer et al. (28, 29). Each model revealed the
total amount of variance explained by the model, and the specific
variables that emerged as predictors. We conducted 21 Random
Forests models on each dataset with satisfaction as the de-
pendent variable (i.e., 7 predicting baseline satisfaction, 7 pre-
dicting follow-up satisfaction, and 7 predicting change in
satisfaction). Similarly, we conducted 21 Random Forests mod-
els on each dataset that contained commitment (i.e., our sec-
ondary dependent variable), for a total of 42 Random Forests
models (maximum) per dataset. Results across the 43 datasets
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were then combined using random-effects meta-analysis. Results
for each individual dataset can be found at https://osf.io/4pbfh/.

Meta-Analysis. Each of the 42 models was examined as a separate
random-effects meta-analysis; the 21 satisfaction meta-analyses
each contained k = 43 effect sizes, and the 21 commitment meta-
analyses each contained k = 31 effect sizes. We performed the
basic analyses using comprehensive meta-analysis (30). To cal-
culate each of the effect sizes, we transformed the “% variance
accounted for” outcome of the Random Forest model into effect
size r (by taking the square root); we then administered the
Fisher zr transformation, and we used N-3 as the inverse variance
weight (31, 32), where N equals the number of observations used
in the Random Forests analysis. We transformed the outcomes

of the meta-analyses back to percent variance accounted in Re-
sults (by squaring the values). The meta-analytic data files for
satisfaction and commitment can be found at https://osf.io/
v5e34/.

Moderation Analyses
We examined 12 possible meta-analytic moderators. Ten were
features of the datasets: Study length, length between time
points, number of time points, average relationship length of the
sample, average age of the sample, the year data collection be-
gan, country, publication status (≥1 publication vs. not previously
published), sample type (community vs. college student), and
relationship status (dating vs. married). We also examined two
features that were specific to each meta-analytic datum: Number

Table 1. Analytic features of the 43 datasets

Dataset
Baseline

n
Follow-
up n

Change
n

No. of
independent
predictors

No. of relative
predictors

Baseline
satisfaction
mean (SD)

Follow-up
satisfaction
mean (SD)

Baseline
commitment
mean (SD)

Follow-up
commitment mean

(SD)

1 148 133 146 97 50 6.01 (0.89) 5.56 (1.53) 5.88 (1.25) 5.63 (1.59)
2 240 228 240 98 50 5.84 (1.21) 5.59 (1.58) 6.77 (0.54) 6.49 (1.05)
3 176 156 154 13 6 6.05 (1.02) 6.00 (1.09) NA NA
4 166 166 166 32 71 5.31 (0.69) 5.01 (1.02) NA NA
5 350 316 343 42 50 69.59 (9.49) 66.18 (13.87) 6.87 (0.43) 6.71 (0.72)
6 172 90 90 9 5 131.20 (21.04) 121.48 (31.16) NA NA
7 201 119 116 11 9 132.05 (21.00) 122.84 (30.67) NA NA
8 194 157 155 9 22 5.86 (1.19) 5.74 (1.27) 6.19 (1.04) 6.11 (1.10)
9 129 126 126 4 11 6.03 (1.05) 5.93 (1.25) 6.59 (0.77) 6.38 (1.07)
10 88 61 61 7 10 7.96 (0.99) 7.79 (1.38) 6.72 (0.57) 8.26 (1.03)
11 159 117 115 23 15 6.01 (0.88) 5.68 (1.22) 6.13 (0.91) 5.98 (1.05)
12 124 124 124 9 8 6.03 (0.72) 6.02 (0.80) NA NA
13 200 145 192 27 18 5.92 (0.76) 5.97 (1.00) 6.48 (0.65) 6.39 (0.90)
14 122 106 106 21 21 5.97 (0.85) 5.93 (1.07) 6.34 (0.84) 6.26 (1.05)
15 239 158 206 33 20 6.84 (1.60) 6.82 (1.65) 7.48 (0.93) 7.39 (1.10)
16 450 365 410 11 5 6.45 (0.68) 6.09 (0.96) 6.81 (0.45) 6.62 (0.75)
17 345 120 195 40 21 5.98 (0.91) 5.55 (1.38) 6.11 (1.05) 5.93 (1.29)
18 245 107 192 11 29 6.78 (1.21) 6.71 (1.08) 6.75 (1.17) 6.85 (0.96)
19 80 32 51 6 11 28.95 (4.61) 27.44 (5.46) NA NA
20 386 278 343 37 41 42.65 (5.14) 41.26 (6.81) NA NA
21 255 189 189 41 32 5.97 (0.83) 5.93 (0.84) 6.47 (0.73) 6.34 (1.04)
22 347 216 283 24 22 6.02 (0.76) 5.82 (0.93) 6.48 (0.67) 6.23 (1.08)
23 318 258 289 21 19 41.89 (4.56) 41.21 (5.83) NA NA
24 394 230 372 17 15 4.52 (0.49) 4.50 (0.55) 4.87 (0.25) 4.86 (0.36)
25 172 118 144 32 29 70.69 (9.06) 76.63 (7.78) 6.53 (0.65) 6.44 (0.69)
26 464 322 322 32 4 −0.00 (0.97) −0.00 (1.02) 6.53 (1.68) 6.58 (1.94)
27 254 247 247 75 69 6.16 (0.89) 5.95 (1.14) 5.45 (0.63) 5.37 (0.59)
28 206 130 158 12 14 4.45 (0.70) 4.48 (0.70) 5.98 (0.88) 5.88 (0.90)
29 564 261 478 32 19 4.46 (1.21) 4.34 (1.36) 5.61 (1.08) 6.00 (1.07)
30 237 208 205 16 19 6.11 (1.02) 5.92 (1.31) 6.64 (0.80) 6.46 (1.01)
31 203 167 167 88 28 31.23 (2.69) 31.24 (3.27) NA NA
32 196 136 196 8 4 5.96 (1.13) 5.85 (1.23) 6.33 (1.00) 6.19 (1.08)
33 156 156 156 9 10 17.65 (3.63) 17.99 (3.76) NA NA
34 323 316 316 17 11 16.90 (2.93) 16.95 (3.37) NA NA
35 192 161 161 20 17 5.89 (1.06) 5.74 (1.38) 6.41 (0.88) 6.29 (1.14)
36 111 139 111 44 2 117.86 (22.45) 123.06 (19.42) NA NA
37 97 31 72 12 19 5.22 (1.50) 5.35 (1.33) 6.19 (0.96) 6.45 (0.95)
38 12,200 7,731 9,886 63 26 5.42 (1.60) 5.89 (1.28) 1.52 (0.88) 1.57 (0.39)
39 373 190 322 58 131 5.54 (0.93) 5.49 (0.97) 6.80 (0.90) 6.84 (0.87)
40 151 109 133 39 54 6.66 (1.61) 7.00 (1.16) 6.75 (1.08) 6.74 (0.90)
41 240 181 181 38 24 7.63 (1.16) 5.92 (1.10) 7.79 (1.30) 6.05 (1.02)
42 390 351 327 13 19 41.39 (4.65) 39.98 (6.19) 6.55 (0.56) 5.14 (0.49)
43 144 73 73 14 31 5.09 (0.72) 5.09 (0.83) 7.83 (1.25) 7.95 (1.26)

Note: The three n columns refer to the number of usable participants in the models predicting baseline, follow-up, and change in satisfaction, respectively.
See SI Appendix, Table S2 for dataset authorship details. Note that for datasets with more than two time points, change scores could still be calculated for
some participants whose data were missing at the final wave. NA, not applicable.
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of predictors used in the Random Forests model and number of
predictors selected in the final model by VSURF. We used
David Wilson’s SPSS macros (http://mason.gmu.edu/∼dwilsonb/
ma.html) to perform the moderator analyses (i.e., ANOVA for
country, regression for the other 11 moderators).

Results
Primary Meta-Analytic Results. For baseline satisfaction, actor-
reported individual variables (19%) were approximately four
times as powerful as partner-reported individual variables (5%),
and combining actor and partner individual variables (21%)
added no predictive power beyond actor individual variables
alone (Fig. 2). Actor-reported relationship variables predicted
baseline satisfaction quite powerfully (45%), much more so than
partner-reported relationship variables (15%). Combining actor-
and partner-reported relationship variables (46%), and

combining all individual and relationship variables (44%) added
no predictive power beyond actor-reported relationship variables
alone. In essence, these findings revealed that any variance in
satisfaction explained by information about actor-reported indi-
vidual differences, partner-reported individual differences, and
partner-reported relationship-specific variables could be
explained by information about the actor’s relationship-specific
variables.
When predicting follow-up satisfaction, the pattern of findings

was similar, although not surprisingly, all estimates were smaller.
Analyses predicting change in satisfaction were generally poor.
No analyses accounted for more than 5% of the variance, and
the confidence intervals for all estimates overlapped sub-
stantially. Self-report variables may be ill-equipped to reliably
predict future changes in satisfaction, at least as operationalized
here (typically over a span of 1 to 2 y) (SI Appendix).
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Fig. 2. Meta-analytic results predicting relationship satisfaction. Meta-analytic effect sizes (and 95% CIs) from k = 43 datasets predicting satisfaction at
baseline, at follow-up, and over time. The dependent measure is the percentage of variance accounted for in the Random Forests model that used the set of
predictors indicated on the x axis.
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Fig. 3. Meta-analytic results predicting relationship commitment. Meta-analytic effect sizes (and 95% CIs) from k = 31 datasets predicting commitment at
baseline, at follow-up, and over time. The dependent measure is the percentage of variance accounted for in the Random Forests model that used the set of
predictors indicated on the x axis.
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Results for commitment were generally smaller across models
(the average estimate was 3% smaller), but the pattern of find-
ings mirrored those of satisfaction (Fig. 3). Actor-reported var-
iables were at least twice as powerful as partner-reported
variables, partner variables did not contribute beyond actor
variables alone, individual variables did not contribute beyond
relationship variables alone, and change in commitment was
generally unpredictable.

Meta-Analytic Moderators. Each of the 12 moderators was exam-
ined across each of the 21 meta-analytic models for satisfaction
and the 21 meta-analytic models for commitment [12 × (21 +
21) = 504 total tests] (SI Appendix, Tables S6 and S7). We only
interpreted a moderator substantively if 4 or more of a set of 21
tests achieved significance: The binomial probability of at least 4
of 21 tests achieving significance under the null is P = 0.019 (33).
Three of the 12 moderators exhibited meaningful effects. Ef-

fects were generally larger for 1) baseline and follow-up satis-
faction in datasets in which the couples were older, and 2)
baseline commitment in datasets that had smaller lags between
time points. Furthermore, individual difference variables per-
formed better for studies that were conducted relatively recently.
None of the moderators affected our (in)ability to reliably pre-
dict change in satisfaction or commitment. See SI Appendix for
detailsQ: 15 .

Predictor Restriction Effects. To what extent are the current results
dependent on which variables are removed or retained as pre-
dictors? In total, we conducted three versions of the current
analyses: A version in which no predictors were excluded except
for satisfaction and commitment (“none”; i.e., our preregistered
analysis plan); a version in which trust, intimacy, love, and pas-
sion were removed as potential predictors (“moderate”); and a
version in which eight more variables were removed as suggested
by a reviewer (affection, appreciation, conflict, empathy,

investment, perceived partner responsiveness, sacrifice motives,
and sexual satisfaction; “stringent”). The moderate version is
presented above and the two alternative versions are presented
in SI Appendix. The relative performance of all three analytic
strategies is depicted in Fig. 4.
In Fig. 4, the blue bars indicate the variance accounted for by

actor-reported relationship variables at baseline (Left) and
follow-up (Right), averaged across the satisfaction and commit-
ment analyses. This figure addresses two key questions: Do
models that include partner- and actor-reported relationship
variables explain more variance than actor-reported relationship
variables alone (stacked purple bars), and do models that include
all actor- and partner-reported individual difference and re-
lationship variables explain more variance than models including
actor-reported relationship variables alone (Fig. 4, stacked red
bars)? The answer in both cases is: Not by much. The total
amount of variance explained declines as more potential pre-
dictors are excluded from the analyses. However, the individual
difference and partner-reported variables consistently explain
only an additional 0.0 to 1.9% of the variance at baseline and 0.9
to 3.5% of the variance at follow-up. In other words, regardless
of which actor-reported relationship variables are retained or
removed, individual differences and partner-reports collectively
explain very little additional variance in relationship quality.
Finally, relationship quality change again proved difficult to

predict. The ability to predict change was similar regardless of
whether the low (mean = 2.4%), moderate (mean ≤ 2.5%), or
severe (mean = ≤ 2.2%) restriction strategy was implemented Q: 16.

Predictive Success of Specific Constructs. We also compiled and
categorized the success of specific predictors. Constructs were
sorted according to their prediction success rates: The number of
measures of the construct that emerged as a contributing pre-
dictor for at least one of the three time points (baseline, follow-
up, or change over time), divided by the number of measures of
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the construct that were tested. The results for the most com-
monly measured constructs—those that were measured at least
10 times across datasets—are presented in Table 2 (relationship
predictors) and Table 3 (individual predictors).
The most reliable (top five) relationship variables were per-

ceived partner commitment (e.g., “My partner wants our re-
lationship to last forever”), appreciation (e.g., “I feel very lucky
to have my partner in my life”), sexual satisfaction (e.g., “How
satisfied are you with the quality of your sex life?”), perceived
partner satisfaction (e.g., “Our relationship makes my partner
very happy”), and conflict (e.g., “How often do you have fights
with your partner?”). Many of these successful predictors have
been emphasized by interdependence theory and related models
[e.g., the interpersonal process model (34), the investment model
(35), communal and exchange perspectives (36)], although most
theories are not specific enough to generate hypotheses about
which relationship variables should function as better predictors
than others. Relatively objective relationship variables (e.g.,
cohabiting status, dating versus married relationship status,
having children) generally mattered little, with the exception of
relationship length. Finally, the predictors trust, intimacy, love,
and passion generally performed quite well in the SI Appendix

analyses that included them as predictors (see boldface rows in
Table 2).
The most reliable individual difference variables were satis-

faction with life (e.g., “The conditions of my life are excellent”),
negative affect (e.g., “distressed,” “irritable”), depression (e.g.,
“feelings of hopelessness”), attachment anxiety (e.g., “I worry a
lot about my relationships with others”), and attachment avoid-
ance (e.g., “I prefer not to be too close to romantic partners”).
Attachment theory (37) was well-supported in that its two central
individual difference constructs were the fourth and fifth most
robust predictors. Variables from personality psychology
(agreeableness, conscientiousness) and clinical psychology
(negative affect, positive affect, depression, anxiety) also proved
relevant; these results are consistent with a large body of re-
search on the strong, likely bidirectional connection between
relationship quality and well-being (38). Demographic variables,
such as sex/gender, race/ethnicity, and education mattered little.

Discussion
How predictable is relationship quality, and which variables
predict it best? This project aimed to answer these questions by
applying machine-learning techniques to 43 datasets consisting

Table 2. Success rates of the most commonly measured relationship-specific constructs across datasetsQ: 21

Construct

No. of predictors tested Percent of actor versions successful
Percent of partner versions

successful

Overall success
rate, %

Predicting
satisfaction

Predicting
commitment

Predicting
satisfaction, %

Predicting
commitment, %

Predicting
satisfaction, %

Predicting
commitment, %

Perceived partner
commitment

10 10 90 70 100 80 85

Intimacy 12 9 92 92 67 67 81
Appreciation 10 10 90 80 60 60 72
Love 17 17 88 53 76 65 71
Sexual satisfaction 20 13 90 75 54 54 71
Perceived partner

satisfaction
11 9 91 64 78 44 70

Conflict 29 28 90 79 57 50 69
Perceived partner

responsiveness
14 13 93 57 69 54 69

Trust 15 15 87 60 73 53 68
Investment 13 13 77 62 92 38 67
Support general 12 9 67 42 89 67 64
Capitalization 16 10 81 62 40 30 58
Normative

attachment
13 13 69 38 69 54 58

Relationship length 54 41 59 67 44 56 57
Passion 14 13 64 50 54 46 54
Alternatives 12 12 58 33 67 50 52
Sexual frequency 11 8 73 36 25 50 47
IOS 24 23 54 33 65 35 47
Affection 10 7 50 50 29 43 44
Empathy 11 11 45 36 45 45 43
IPV 26 17 27 62 47 35 43
Conflict strategies 23 15 52 30 27 27 36
Power 13 13 31 31 31 23 29
Relationship status 27 21 26 22 38 29 28
Cohabiting 15 14 27 20 29 36 28
Sacrifice motives 22 22 18 18 14 14 16
Children 32 23 16 6 4 13 10

Note: Success rate percentages can be interpreted as the strength of the variable relative to the other variables of this class, but it does not have any
independent meaning or effect size. Random Forests do not specify the size or direction of the effect; only that the variable meaningfully contributes to the
total variance explained in a given model. Some studies included multiple measures of the same construct, and thus the number of predictors tested can be
higher than the total number of datasets. Boldfaced rows correspond to four constructs excluded from the primary models reported in the main text, because
they are debatably indicators (not predictors) of relationship quality (1). The values for these four constructs derive from alternative models reported in
SI Appendix.
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of over 10,000 couples. Results revealed that variables capturing
one’s own perceptions of the relationship (e.g., conflict, affec-
tion) predicted up to 45% of the variance in relationship quality
at the beginning of each study and up to 18% of the variance in
relationship quality at the end of each study. Individual
differences—variables capturing features of the self, such as
neuroticism, age, or gender—predicted a smaller but still
meaningful amount of variance: Up to 21% at baseline and up to
12% at follow-up. Furthermore, individual differences did not
predict relationship quality above relationship-specific predictors
alone, partner-reports did not predict relationship quality be-
yond actor-reports alone, and relationship-quality change was
largely unpredictable. That is, our results suggest that if Amir
and Alex each complete many questionnaires about themselves
and their relationship, all of the predictable variances in their
relationship quality will be explained solely by their own per-
ceptions of that relationship. Amir’s reports about his own traits
and other characteristics, Alex’s reports about her characteris-
tics, and Alex’s perceptions of the relationship will not explain
any additional variance in Amir’s relationship quality. Further-
more, changes in Amir’s relationship quality over subsequent
months or years are unlikely to be predictable by any of these
self-report measures.

Explaining the Relative Success of the Models. The finding that
relationship-specific variables are more predictive of relationship
outcomes than individual difference variables is consistent with
existing meta-analyses. In reviews of marital (12) and dating
relationships (13), relationship-specific variables are strong pre-
dictors of divorce and nonmarital break-ups, respectively,
whereas individual difference variables have lower predictive
utility. However, meta-analyses are broadly limited to the effects
already published in existing literature and tend to reflect the
publication biases of that literature (see ref. 39 for discussion). In
particular, relationship variables may emerge as stronger pre-
dictors than individual differences across published studies be-
cause some prominent relationship theories [e.g.,
interdependence theory (40)] tend to emphasize dyadic and
contextual features over stable individual differences. This
project addresses this limitation by conducting new, preregis-
tered analyses on raw datasets, such that every measured variable
had a similar chance to contribute to the models.
Why did the addition of individual differences and partner

reports to the models fail to improve upon the predictive power
of actor-reported relationship variables alone? Had these vari-
ables functioned as robust and consistent moderators of actor
relationship-specific variables (e.g., individual-difference ×
relationship-specific variable interactions; actor × partner in-
teractions), the addition of individual differences and partner-
reported variables to the Random Forest models should have
accounted for more variance (24). One possibility is that the
actor-reported relationship variables are redundant with each
other (and with the satisfaction/commitment-dependent mea-
sures), and their collective inclusion leads to model mis-
specification. This concern surely seems intuitive for scholars
familiar with typical problems caused by collinearity in multiple
regression contexts, in which the simultaneous inclusion of many
correlated predictors causes estimates to become erratic. Criti-
cally, Random Forests models are specifically designed to
overcome this issue through recursive partitioning: The iterative
sampling of random sets of participants and predictors (24, 25).
In light of the way Random Forests models work, then it makes
sense that our additional analyses that relaxed and restricted the
specific predictors available did not strongly affect these
conclusions.
Another plausible, more theoretically interesting possibility is

that individual differences and partner reports exert their effects
not via moderation but via mediation. That is, individual

differences and partner effects are important, but they exert their
influence on relationship quality indirectly, via interpersonal
processes that are adequately captured by the actor-reported
relationship variables. The “all predictors” models do not pre-
dict more variance than the “actor-reported relationship” mod-
els because actor-reported relationship variables fully mediate
the effects of the other predictors (Fig. 5). To better understand
how individual differences might shape relationship dynamics
and in turn relationship quality, research is needed on the early
stages of relationships when these relationship-specific dynamics
first emerge Q: 17(41).
Also notable was the underperformance of the models pre-

dicting change in relationship quality. In other words, any na-
scent signal of whether a relationship is going to become better
or worse over time does not seem to be detectable in self-
reported variables at baseline. Surely, change in relationship
quality can be explained by baseline variables in conjunction with
time-varying predictors [e.g., stressful life events, the transition
to parenthood (42, 43)]. However, models that attempt to ac-
count for future change entirely from contemporaneously
assessed self-report variables may not prove robust. These results
are consistent with another recent large collaboration showing
that life trajectories are generally difficult to predict, even with
complex machine-learning methods (44).

Limitations and Future Directions. Why did demographic variables
underperform as predictors of relationship quality? One possi-
bility is that, reflecting a common limitation of psychological
samples more broadly (45), the present samples may have been
overly affluent, White, and college-educated, and were thus too
homogeneous to reveal the predictive power of variables such as
ethnicity and education. This possibility seems unlikely, however,
because more than half of the couples tested (n = 6,298) were
recruited as part of the Supporting Healthy Marriages Project
(Dataset 38), which intentionally oversampled low-income cou-
ples. This sample varied considerably on ethnicity (both spouses
were White in 21% of couples), education (at least one partner
had a college degree in 27% of couples), and income (42% of
couples reported income levels below the poverty line). Yet, the
pattern of results from this sample mirrored the results of the
other 42 datasets (SI Appendix, Fig. S3).
All of the current datasets were sampled from Western

countries (the United States, Canada, Switzerland, New Zea-
land, The Netherlands, and Israel). Future work should examine
whether the current effects generalize beyond the Western
context. Our conclusions are also specific to baseline self-report
predictor variables; of the 1,149 relationship-specific variables
tested in this project, 99.4% were explicit self-report rating scales
(and similar numerical response scales) rather than independent
observations that directly captured participants’ real-time be-
havior (i.e., variables directly assessing the interpersonal behav-
ior arrow in Fig. 1). Future work should explicitly solicit
observational and other nonself-report data and compare their
predictive utility to self-reports. These results similarly do not
apply to nonself-report measures of contextual variables, such as
income and debt (e.g., which could be measured instead via tax
returns), stress (e.g., diurnal cortisol patterns, neighborhood-
level crime statistics), or the role of social networks (e.g., in-
formant reports). In this project, such variables were measured
with self-reports—for example, self-reported income, stress, or
network support—and were thus categorized as individual dif-
ferences. However, drawing on evidence that context can matter
a great deal for relationship quality (11), another good future
direction would be to test contextual variables as their own
category of predictors, ideally using nonself-report measures.
Finally, this collaboration included more datasets from the lab-
oratories of psychologists than sociologists, communications
scholars, or family studies scholars; datasets in these disciplines
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may commonly include variables that reveal different
conclusions.
This study—which represents the largest and most integrative

data analytic effort in the study of romantic relationships—
suggests the following four constraints on future theories and
models of relationship dynamics. First, constructs self-reported
by the partner are unlikely to predict the actor’s relationship
quality beyond the actor’s own (contemporaneously assessed)
individual-difference and relationship-specific variables. Second,
individual differences are unlikely to predict relationship quality
beyond (contemporaneously assessed) relationship-specific var-
iables. Third, change in relationship quality was not predictable
from baseline self-report measures, so change is likely a function
of external context, behavioral processes, or other factors that
are themselves changing over time. Fourth, models should posit
larger effect sizes for the variables that fared well (vs. poorly) in
Tables 2 and 3, regardless of whether those models emphasize

main effects or interactions. Of course, the occasional study may
report findings that run contrary to these constraints. Our col-
laborative effort does not necessarily overturn such findings, but
rather suggests that scholars may want to raise the standard for
attaining high confidence in them (e.g., await the independent
replication of the finding in datasets that are notably distinct
from those we meta-analyze here).

Conclusion
From a public interest standpoint, this study provides provisional
answers to the perennial question “What predicts how satisfied
and committed I will be with my relationship partner?” Experi-
encing negative affect, depression, or insecure attachment are
surely relationship risk factors. But if people nevertheless man-
age to establish a relationship characterized by appreciation,
sexual satisfaction, and a lack of conflict—and they perceive
their partner to be committed and responsive—those individual

Table 3. Success rates of the most commonly measured individual difference constructs across datasets

Construct

No. of predictors tested Percent of actor versions successful Percent of partner versions successful

Overall success
rate, %

Predicting
satisfaction

Predicting
commitment

Predicting
satisfaction, %

Predicting
commitment, %

Predicting
satisfaction, %

Predicting
commitment, %

Satisfaction with
life

12 12 100 83 92 75 88

Depression 28 18 82 68 72 72 74
Negative affect 10 3 90 70 33 67 73
Anxious

attachment
38 29 71 74 62 76 71

Avoidant
attachment

34 25 71 65 80 68 70

Age 37 25 59 70 72 72 68
Anxiety 11 8 73 82 50 50 66
Self-esteem 16 15 56 50 67 60 58
Agreeableness 20 18 50 60 50 56 54
Positive affect 17 10 53 59 40 60 54
Psychological

well-being
19 9 53 53 44 44 50

Religiosity 16 16 38 44 69 44 48
Stress 34 27 38 50 59 41 47
Conscientiousness 19 17 47 26 53 47 43
Income 26 21 46 50 43 29 43
Neuroticism 20 18 65 40 33 22 41
Openness 20 18 20 40 44 44 37
Relationship

beliefs
19 19 37 32 53 26 37

Empathy 18 13 28 22 46 38 32
Sexism 21 21 38 24 29 38 32
Health 30 24 40 27 29 29 31
Extraversion 20 18 40 30 28 11 28
Alcohol use 17 14 18 24 43 29 27
Family history 12 12 17 25 42 17 25
Political

orientation
10 10 20 20 30 30 25

Education 36 24 22 19 29 25 23
Employed 18 16 33 17 12 25 22
Aggression 13 13 15 38 0 31 21
Race/ethnicity 54 46 20 22 15 17 19
Gender 31 25 13 16 24 20 18
Own traits 35 35 9 20 23 17 17
Religious

affiliation
15 14 20 20 14 7 16

Parents’
relationship

13 13 8 15 31 0 13

Ideal standards 39 39 10 3 18 8 10

See legend to Table 1.
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risk factors may matter little. That is, relationship quality is
predictable from a variety of constructs, but some matter more
than others, and the most proximal predictors are features that
characterize a person’s perception of the relationship itself.
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